	Western Alaska Salmon Stock Identification Program Technical Document: ¹ 15
1 2 3 4 5 6 7	 Version: Addendum 1 Title: Addendum 1 to Technical Document 15 "Chum salmon reporting group evaluations using simulated fishery mixtures" Authors: C. Habicht, W.D. Templin, N. Decovich, J. Jasper Date: September 26, 2011
8	Introduction
9	
10	During the joint Advisory Panel (AP)/Technical Committee (TC) meeting held in Anchorage on
11	September 21 and 22, 2011, Gene Conservation Laboratory (GCL) presented results of tests
12	evaluating reporting groups for the chum salmon baseline. GCL followed the AP
13	recommendations from the joint AP/TC meeting on March 17, 2011 and developed a flow chart
14	for testing the viability of reporting groups. The viability of reporting groups was tested using
15	100% proof tests described in Technical Document (TD) 5, "Status of the SNP baseline for
16	sockeye salmon." The results from these tests indicated that the addition of new SNPs and
17	populations to the baseline did not provide the expected or desired level of resolution for the
18	Coastal Western Alaska (CWAK) area.
19	
20	At the meeting, the AP requested tests using mixtures with compositions more similar to
21	proportions that might be observed in an actual fishery (fishery-based proof tests) to inform
22	decisions about determining appropriate reporting groups for CWAK populations. The fisheries-
23	based proof tests would be more analogous to mixtures associated with WASSIP than the 100%
24	proof tests used to test reporting groups. In particular, they would 1) contain fish originating
25	from more than one reporting group; 2) contain 400 fish (200 fish were used in the 100% proof
26	tests); and 3) have a prior more similar to the prior likely to be used for WASSIP mixtures (the
27	100% proof tests used a uniform prior giving equal weight to each regional-reporting group).

¹ This document serves as a record of communication between the Alaska Department of Fish and Game Commercial Fisheries Division and the Western Alaska Salmon Stock Identification Program Technical Committee. As such, these documents serve diverse ad hoc information purposes and may contain basic, uninterpreted data. The contents of this document have not been subjected to review and should not be cited or distributed without the permission of the authors or the Commercial Fisheries Division.

Fishery-based proof tests would provide a better picture of the magnitude and direction of biases
and errors in potential fishery samples when using Norton Sound, lower Yukon River,
Kuskokwim River, and Bristol Bay as separate reporting groups or as a single CWAK reporting
group.

32

An ad-hoc committee was assembled, chaired by Michael Link and including Art Nelson, Pat Martin, Doug Eggers and Denby Lloyd. The committee was tasked with developing 6 fisherybased mixture compositions for the fishery-based proof testing by ADFG, reviewing the results and providing recommendations to the AP and TC. The timeframe for this exercise is short due to the time constraints of the project. The committee will provide the mixture compositions to GCL by September 30 and the conclusion of this work is scheduled for October 15.

39

40 Prior choice for proof fishery-based proof tests

41 In order to provide fishery-based proof tests that are useful for interpreting bias and error in stock 42 composition estimates associated with WASSIP, it is important that the analysis methods follow, 43 as closely as possible, those proposed for WASSIP mixtures. The priors that we anticipate using 44 to analyze WASSIP mixtures will use information from strata within each fishery (addendum to 45 TD 13, "Selection of a Prior for Mixed Stock Analysis"; sent to the TC September 26, 2011). 46 Since we do not have this information for this exercise, we will use a surrogate for these priors 47 based on estimates of stock composition for the same mixtures derived from the maximum 48 likelihood-based method implemented in SPAM version 3.7b (Debevec et al. 2000).

49

50 The other prior options considered were to use the regional-reporting group uniform prior or to 51 use the known stock composition; both options are problematic. The regional-reporting group 52 uniform prior would likely inflate biases compared to estimates using the methods anticipated for 53 WASSIP mixtures because no fishery-based information would be incorporated in the prior. 54 This is especially pronounced for reporting groups that are genetically less distinct, such as the 55 potential reporting groups within CWAK, where the effects would be more pessimistic. On the 56 other hand, using the known stock composition as the prior would likely produce less bias than 57 we might expect from the methods anticipated for WASSIP mixtures. The effect would be more

optimistic for reporting groups that are genetically less distinct, such as the CWAK reportinggroups.

60

61 Kuskokwim River reporting group

During the meeting, the AP requested that the upper Kuskokwim River populations be moved into the CWAK reporting group rather than being included in the upper Yukon/Kuskokwim reporting group. For these fishery-based proof tests, the upper Kuskokwim River populations will be added to the lower Kuskokwim River reporting group and this new reporting group will be referred to as the "Kuskokwim River" reporting group. The upper Yukon River reporting group will be maintained separately.

- 68
- 69

Methods

70

71 Developing mixture compositions

The committee will develop 6 fishery-based stock compositions for proof testing. These fishery compositions will cover a wide range of stock compositions for evaluating the magnitude and direction of biases and the magnitude of error for reporting groups present from high to low proportions within fisheries. Final stock compositions for proof tests will be provided to the GCL by September 30.

77

78 Testing mixture compositions

79 A set of 400 fish was randomly selected and removed from the baseline in exact proportion to 80 the mixture compositions provided by the committee. The process was repeated 5 times for each 81 set of fishery-based mixture compositions. SPAM was used to produce stock composition 82 estimates for each set of selected fish. These estimates served as priors for the BAYES analyses. 83 BAYES was performed as described in TD 5, except that we used the SPAM results as the prior, 84 with a prior weight of 1 fish. Estimates and 90% credibility intervals were determined from the 85 posterior distribution formed from 3 chains with different starting conditions. Each chain was 86 40,000 iterations with only the last 20,000 used in the posterior distribution. 87

88 For any mixtures that contained Kuskokwim River, fish from only the coastal populations were

89 selected for the mixtures. This was done to avoid over-optimistic simulation results that could be

90 an artifact of the genetic divergence between upper Kuskokwim River fish and other coastal

91 western Alaska fish. Upper Kuskokwim River fish are represented by a few small populations

92 and these fish are unlikely to be in any WASSIP mixture in appreciable numbers (Gilk et al.

93 2009). If we included fish in mixtures in proportion to the number of populations represented in

94 the baseline, the proof tests could appear inappropriately optimistic in estimating Kuskokwim

- 95 River components.
- 96

97 Reporting mixture compositions and performance of reporting groups

98 Results were tabulated for two sets of reporting groups: 1) the 9 reporting groups that passed the

99 90% correct allocation tests using the 100% proof tests (CWAK as a single reporting group) and

100 2) the 12 reporting groups where the CWAK reporting group as subdivided into Norton Sound,

101 lower Yukon River, Kuskokwim River, and Bristol Bay reporting groups (Table 1). Tabulation

102 of results included a table of four related measures:

103 1) absolute deviations (range: 0 to 1) from known proportions

104
$$\left(D_{s,g}^{(i)} = \left| \hat{p}_{s,g}^{(i)} - p_{s,g} \right| \right);$$

105 2) relative percent deviations (range: 0% to infinity%) from known proportion

106
$$\left(\theta_{s,g}^{(i)} = \frac{D_{s,g}^{(i)}}{p_{s,g}} * 100\right);$$

107 3) root mean square error (range 0 to 1)

108
$$\left(rMSR_g = \sqrt{\frac{1}{n}\sum_{i=1}^{n} \left(\hat{p}_{s,g}^{(i)} - p_{s,g}\right)^2}\right)$$
, and;

109 4) relative root mean square error (range 0 to infinity)

110
$$\left(rMSR'_{g} = \sqrt{\frac{1}{n}\sum_{i=1}^{n} \left(\hat{p}_{s,g}^{(i)} - p_{s,g}\right)^{2} / \hat{p}_{s,g}^{(i)}}\right)$$

111 The first two measures were provided for each reporting group, *g*, for each fishery mixture, *s*,

and for each repetition i (i = 1, 2, ..., n; n = 5), whereas the second set of measures are

summaries across repetitions for each reporting group for each mixture. Results were provided

114 to the committee for review as they became available so that the committee can determine if a

115	recommendation can be made to the AP/TC before all the fishery-based proof tests are
116	completed. The results from the initial set of proportions are reported here.
117	
118	Results
119	Developing mixture compositions
120	The committee provided the first fishery-based stock compositions for testing consisting of the
121	proportions shown as "Actual" in Table 2. An additional 5 fishery-based stock compositions
122	will be provided for testing. Here we present the results from this first fishery-based proof test.
123	
124	Testing mixture compositions
125	SPAM results that served as priors for the BAYES analyses are reported in Table 2.
126	
127	Reporting mixture compositions and performance of reporting groups
128	BAYES stock composition estimates and 90% credibility intervals along with absolute
129	deviations and relative percent deviations for each of the 5 replicates are presented for both the 9
130	and 12 reporting group sets (Table 3). Stock compositions and 90% credibility intervals are also
131	presented graphically in Figures 1 and 2. Root mean square error and relative root mean square
132	error across repetitions for each reporting group for each mixture are reported in Table 4.
133	
134	Discussion
135	
136	Stock composition estimates for the 9 reporting groups (CWAK as a single reporting group)
137	were more precise and had smaller 90% CI than for the reporting groups of the subdivided
138	CWAK (Norton Sound, lower Yukon River, Kuskokwim River, and Bristol Bay reporting
139	groups) (Table 3 and Figures 1 and 2). The estimates for the 9 reporting were within 0.03 of the
140	actual in every case and averaged 0.01, whereas for the 4 reporting groups within CWAK, the
141	deviations were as high as 0.14 from the actual, and averaged 0.05. Credibility interval widths
142	averaged 0.04 and 0.16 for the 9 and 12 reporting groups, respectively.
143	
144	The CIs seem to be appropriate for both the highly identifiable 9 reporting groups and the 4 less-

145 identifiable CWAK reporting groups. The actual (correct) proportion was included within the

146 90% CI for the 9 reporting groups and the 4 CWAK reporting groups 89% and 85% of the time,

147 respectively. This indicates that the wider CI's for the CWAK reporting groups are

appropriately wide.

149

150 A well known statistical property is that variance of a proportional estimate is greater when the 151 proportion approaches 0.5. This means that as actual proportions reach 0.5, the width of the CI 152 increases. Conversely, proportions near 0 and 1 should have narrower CIs. In addition, because 153 CIs are bounded by 0 and 1, they are necessarily truncated. However, this alone does not explain 154 the broader 90% CI's for the Norton Sound, Lower Yukon, Kuskokwim and Bristol Bay 155 reporting groups (Figure 2). If this phenomenon were the primary reason for the inflated CI's, 156 the Asia and CWAK reporting groups would have also had broad 90% CI's (Figure 1). The 157 Asia reporting group had a proportion closer to 0.5 than any of the individual CWAK reporting 158 groups, but the 90% CI width for this reporting group averaged half the width of the 4 reporting 159 groups within CWAK (Figures 1 and 2). The same pattern was evident for the CWAK reporting 160 group even though this reporting group was represented by 0.56 of the mixture – the proportion 161 closest to 0.5. A more likely hypothesis to explain these wider CI within the CWAK group is a 162 lack of genetic distinctiveness among these reporting groups.

163

Genetic distinctiveness also can explain the inclusion of 0 in the 90% CI of Norton, but not
NWPenn, and EastKodiak reporting groups, which all had 5% actual contributions in the fisherybased proof test mixture. EastKodiak and NWPenn both met the 90% correct allocation criterion
in 100% proof tests, whereas Norton did not. The imprecision of the Norton measurement
makes it difficult to distinguish the presence of this stock within mixtures.

169

A few biases were observed in these fishery-based proof tests. The largest average biases were seen in the CWAK reporting groups with upward biases in the Yukon River coastal reporting group (4 of 5 replicates with average of 0.05) and downward biases for the Bristol Bay (4 of 5 replicates with average of -0.02). In addition, two reporting groups had large relative negative biases (Koztebue and Northern District Alaska Peninsula; both with averages of -0.01) and, for the Kotzebue reporting group, the estimate was not included in the 90% CI in 4 of the 5

176 replicates.

177	
178	As pointed out during the September joint AP/TC meeting, determining the acceptable level of
179	precision requires weighing the benefits of adding more reporting groups with the risks of
180	providing less precise and more biased estimates. This one test provides insights into the
181	magnitude of errors and magnitude and direction of biases resulting from the division of CWAK
182	into 4 reporting groups. The 4 CWAK reporting groups that did not meet the standard 90%
183	correct-allocation metric had 90% CI ranges that were 4 times as wide and average deviations
184	from the actual stock composition that were 5 times higher than for reporting groups that met the
185	metric. Finally, the largest biases were among the 4 CWAK reporting groups and they were 2 to
186	5 times larger than the biases observed for the reporting groups that met the metric.
187	
188	
189	Literature Cited
190 191 192	 Debevec, E. M., R. B. Gates, M. Masuda, J. Pella, J. Reynolds, and L. W. Seeb. 2000. SPAM (version 3.2): Statistics Program for Analyzing Mixtures. Journal of Heredity 91: 509–510. Gilk, S.E., D.B. Molyneaux, T. Hamazaki, J.A. Pawluk and W.D. Templin. 2009. Biological and genetic characteristics of fall and summer chum salmon in the Kuskokwim River, Alaska. Pages 161-179 <i>in</i> Krueger, C.C. and C.E. Zimmerman, editors. Pacific Salmon: ecology and management of western Alaska's populations. American Fisheries Society Symposium 70, Bethesda, MD.
193 194	Questions for the ad-hoc committee
195	1) Do these results provide the information needed for the committee to recommend
196	reporting groups to the WASSIP AP?
197	2) If not, will additional tests of other fishery-based mixtures provide the information
198	required to make this decision?
199	3) If so, has the committee agreed on proportions for up to 5 additional hypothetical
200	mixtures that would be valuable for these tests?

202

Tables

Table 1. Populations associated with the 9 reporting groups that met the 90% correct allocation criteria based on 100% proof tests and the 12 reporting groups where coastal western Alaska (CWAK) is divided into 4 reporting groups. Mixture sets of 400 individual fish will be randomly selected and removed from the baseline in proportion to the mixture compositions provided by the committee. These mixtures will be analyzed using both the 9 and 12 reporting groups to examine bias and error of the two sets of reporting groups. Reporting group names in parentheses are used in result tables and figures.

	Reporting groups	Population	Ν
"9"	"12"		
Asia		Namdae River	90
(Asia)		Gakko River - early	78
		Abashiri River	80
		Sasauchi River	77
		Yurappu River - early	80
		Yurappu River - late	80
		Teshio River	78
		Shinzunai River	80
		Tokachi River	78
		Kushiro River	79
		Nishibetsu River	80
		Shari River	75
		Tokoro River	69
		Tokushibetsu River	80
		Naiba	98
		Tym River	53
		Bolshaya River	59
		Paratunka River	94
		Amur River - summer run	88
		Bistraya River	66
		Hairusova River	85
		Ozerki Hatchery	93
		Pymta	14′
		Penzhina	43
		Kol River	12
		Vorovskaya	10
		Kamchatka River	50
		Palana River	90
		Magadan	77
		Ossora	87
		Ola River - Hatchery	78

Oklan River

75

211 Table 1. (Page 2 of 6). 212

		Kanchalan	71
		Udarnitza River	43
Kotzebue	Sound	Inmachuk River	9
(Kotzebue	e)	Kiana River	95
		Kobuk - Salmon River (Mile 4)	99
		Noatak River - above hatchery	4′
		Selby Slough	9
		Agiapuk River	9
CWAK	Norton Sound	Eldorado River	8
(CWAK)	(Norton)	Nome River	9
		Pilgrim River	7
		Snake River	9
		Solomon River	6
		Fish River	9
		Kwiniuk River	9
		Niukluk River	9
		Tubutulik River	9
		Shaktoolik River	9
		Pikmiktalik River	9
		Koyuk River	4
		Unalakleet	1
		Ungalik River	14
	Coastal Yukon River	Black River	9
	(Yukon Coastal)	Andreafsky River - East Fork	9
		Chulinak	9
		Beaver Creek - Anvik	1
		Yellow River - Anvik	8
		Innoko River	8
		Kaltag River	9
		Nulato River	1
		Gisasa River	9
		Melozitna River	9
		South Fork Koyukuk R Early	9
		Henshaw Creek - early	9
		Huslia River, Koyukuk	9
		Tozitna River	9
	Kuskokwim River	Mekoryuk River	1(
	(Kuskokwim)	Kwethluk River	14
		Tuluksak River Weir	9

Table 1. (Page 3 of 6).

	Kisaralik River	93
	Aniak River	92
	Salmon River	95
	Holokuk River	103
	Kogrukluk River weir	95
	Kasigluk River - (Set G)	55
	George River	95
	Stony River - Early	95
	Stony River - Late	55
	Necons River	95
	Tatlawiksuk River weir	95
	Nunsatuk River - (Set A)	92
	Takotna River	94
	Kanektok River weir	94
	Goodnews River - North Fork	43
	Big River	94
	South Fork Kuskokwim - fall	95
	Windy Fork Kuskokwim	93
Bristol Bay	Osviak River	88
(BristolBay)	Sunshine Creek	47
	Iowithla River	95
	Snake River	48
	Upper Nushagak	97
	Stuyahok River	86
	Klutuspak Creek	70
	Alagnek River	92
	Whale Mountain Creek	189
	Pumice Creek	95
	Wandering Creek	50
Upper Yukon River	Henshaw Creek - late	60
(UpperYukon)	South Fork Koyukuk R Late	92
	Jim River	92
	Tanana River Mainstem	95
	Toklat River	95
	Kantishna River	94
	Chena River	77
	Salcha River	83
	Delta River - Fairbanks	149
	Bluff Cabin	99
	Big Salt River	70

Table 1. (Page 4 of 6).

2	1	9	

	Chandalar River	92
	Sheenjek River	93
	Black River	95
	Old Crow - Porcupine River	92
	Fishing Branch	9(
	Kluane River	11
	Pelly River	84
	Minto Slough	9
	Tatchun Creek	92
	Big Creek - Canadian Mainstem	10
	Teslin River	92
Northern District Peninsula	Wiggly Creek - Cinder	17
(NorthPenn)	Meshik River	78
	Plenty Bear Creek	13
	Meshik Braided	94
	Ilnik River - "Three Hills River"	4
	North of Cape Seniavin	9
	Right Head Moller Bay	18
	Lawrence Valley Creek	19
	Coal Valley	9
	Deer Valley	9
	Sapsuk River, Nelson Lagoon	14
Northwest District Peninsula	Moffet Creek (Cold Bay)	9
(NWPenn)	Joshua Green	18
	Frosty Creek	19
	Alligator Hole	18
	Traders Cove (AK. Peninsula)	7
	St. Catherine Cove	17
	Peterson Lagoon	18
South Peninsula	Little John Lagoon	8
(SouthPenn)	Sandy Cove	18
	Little John Lagoon	9
	Russell Creek	18
	Delta Creek (Cold Bay)	9
	Belkovski River	8
	Volcano Bay (Cold Bay)	18
	Ruby's Lagoon (Cold Bay)	92
	Canoe Bay	18
	5	7
	Zachary Bay	/ (

221	Table 1. (Page 5 of 6).		
		Coleman Creek	95
		Chichagof Bay	180
		Stepovak Bay - Big River	143
		Stepovak River	189
	Chignik/Kodiak (includes K. Island)	Ivanoff River	181
	(ChignikKod)	Portage Creek	190
		Kujulik - North Fork	93
		North Fork Creek, Kujulik Bay	71
		North Fork Creek, Aniakchak R.	94
		Main Creek	174
		Northeast Creek	94
		Ocean Bay	78
		Nakililock River	95
		Chiginagak Bay River	159
		Kialagvik Creek (Wide Bay)	177
		Pass Creek - Wide Bay	94
		Dry Bay River	71
		Bear Bay Creek	187
		Alagogshak River	94
		Big River	95
		Big River (Hallo Bay)	92
		Karluk Lagoon	83
		Sturgeon River	109
		Big Sukhoi	189
		Deadman River	95
		Sitkinak Island	93
		NE Portage - Alitak	94
		Barling Bay Creek	92
		West Kiliuda Creek	87
		Dog Bay	95
		Coxcomb Creek	89
		Gull Cape Creek	92
		Gull Cape Lagoon	94
		Eagle Harbor	94
		Rough Creek	77
		American River	95
		Russian River	185
		Kizhuyak River	174
		Uganik River	175
		Spiridon River - Upper	89
		Zachar River	66
			-

	Kitoi Hatchery	194
		1.04
	McNeil River Lagoon	108
Table 1. (Page 6 of 6). East of Kodiak (EastKodiak)	Chunilna River	83
	Susitna River (Slough 11)	94
	Talkeetna River	50
	Little Susitna River weir	95
	Willow Creek	89
	Carmen Lake	67
	Williwaw Creek	67
	Siwash	97
	Wally Noerenberg Hatchery	18
	DIPAC Hatchery	94
Fo H	Dry Bay Creek	94
	Ford Arm Lake - fall	95
	Hidden Falls Hatchery	95
	Long Bay	94
	Medvejie Hatchery	95
	Nakwasina River	93
	Ralph's Creek	95
	Sanborn Creek	94
	Saook Bay	94
	Sawmill Creek - Berners Bay	95
	Taku River - fall	93
	West Crawfish	92
	Wells Bridge	46
	Disappearance Creek - fall run	18
	Fish Creek - Hyder	83
	Fish Creek - early	49
	Fish Creek - late	49
	Karta River	56
	Lagoon Creek - fall run	78
	Nakat Inlet - summer	95
	North Arm Creek	94
	Carroll River	85
	Neets Bay - fall	95
	Neets Bay - summer	95
	Traitors Cove Creek	91
	Sample Creek	74
	Vitana Diana	, 7,

Kitwanga River

Nisqually River Hatchery

Elwha River

Addendum 1 to WASSIP Technical Document 15: Chum reporting group evaluation

74

93

223 Table 2. SPAM estimates from 5 replicate samples for the first fishery-based proof test. These

estimates were used as priors for the BAYES analysis of the same replicate samples. The 5

replicate samples consisted of different sets of individuals drawn from the baseline in the same

reporting group proportions (Actual). These fish were removed from the baseline and used as

- 227 mixtures.
- 228

				Replic	ates	
Reporting group	Actual	1	2	3	4	5
Asia	0.250	0.251	0.250	0.246	0.245	0.246
Kotzebue	0.020	0.014	0.016	0.017	0.018	0.033
Norton	0.050	0.045	0.076	0.092	0.059	0.075
YukonCoastal	0.100	0.140	0.124	0.106	0.115	0.106
Kusko	0.150	0.118	0.144	0.155	0.191	0.142
BristolBay	0.260	0.254	0.200	0.192	0.199	0.211
UpperYukon	0.020	0.027	0.024	0.026	0.021	0.032
NorthPenn	0.020	0.018	0.033	0.023	0.008	0.034
NWPenn	0.060	0.057	0.059	0.059	0.061	0.051
SouthPenn	0.010	0.019	0.010	0.010	0.010	0.007
ChignikKod	0.010	0.013	0.016	0.022	0.018	0.011
EastKodiak	0.050	0.043	0.049	0.053	0.055	0.051

229

Table 3. BAYES estimates for 5 replicate samples for a single fishery-based proof test.

Estimate (mean), standard deviation (sd), lower (CI 5) and upper (CI 95) 90% credibility interval

values, absolute deviation from the known (ABS dev; proportion) and relative absolute deviation

from the known (Rel ABS dev; percent) for each estimate are provided. Estimates for coastal

236 western Alaska (CWAK) are shown both for a single reporting group and that proportion divided

among the 4 reporting groups (italics) that make up CWAK.

238

Replicate 1						
					ABS	Rel ABS
Reporting group	mean	sd	CI 5	CI 95	dev	dev
Asia	0.258	0.023	0.222	0.296	0.008	3.2
Kotzebue	0.001	0.004	0.000	0.008	0.019	94.5
CWAK	0.591	0.027	0.546	0.636	0.031	5.6
Norton	0.006	0.017	0.000	0.040	0.044	88.1
YukonCoastal	0.237	0.052	0.152	0.322	0.137	136.8
Kuskokwim	0.051	0.046	0.004	0.139	0.099	65.8
BristolBay	0.297	0.048	0.217	0.374	0.037	14.3
UpperYukon	0.015	0.011	0.000	0.035	0.005	25.7
NorthPenn	0.005	0.011	0.000	0.032	0.015	74.8
NWPenn	0.064	0.015	0.041	0.090	0.004	7.5
SouthPenn	0.020	0.012	0.000	0.042	0.010	104.2
ChignikKod	0.001	0.005	0.000	0.011	0.009	86.0
EastKodiak	0.044	0.011	0.027	0.063	0.006	12.7
Replicate 2						
					ABS	Rel ABS
Reporting group	mean	sd	CI.5.	CI.95.	dev	dev
Asia	0.249	0.022	0.213	0.286	0.001	0.4
Kotzebue	0.006	0.004	0.001	0.013	0.014	72.4
CWAK	0.575	0.028	0.528	0.620	0.015	2.6
Norton	0.062	0.047	0.000	0.143	0.012	24.1
YukonCoastal	0.119	0.057	0.037	0.222	0.019	19.0
Kuskokwim	0.189	0.060	0.091	0.288	0.039	26.0
BristolBay	0.204	0.042	0.141	0.278	0.056	21.3
UpperYukon	0.025	0.013	0.004	0.046	0.005	22.5
NorthPenn	0.011	0.011	0.000	0.034	0.009	43.1

0.014

0.012

0.012

0.012

0.042

0.000

0.000

0.029

0.088

0.040

0.038

0.067

0.004

0.010

0.005

0.004

6.3 98.3

51.7

7.1

0.064

0.020

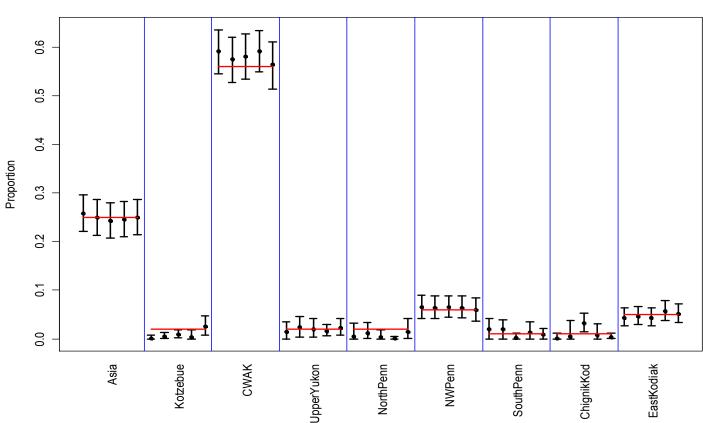
0.005

0.046

NWPenn

SouthPenn

ChignikKod


EastKodiak

Replicate 3		Table 3 (continued)				
					ABS	Rel ABS
Reporting group	mean	sd	CI.5.	CI.95.	dev	dev
Asia	0.243	0.022	0.207	0.280	0.007	2.7
Kotzebue	0.009	0.005	0.002	0.019	0.011	56.7
CWAK	0.581	0.028	0.535	0.627	0.021	3.8
Norton	0.069	0.052	0.000	0.159	0.019	37.2
YukonCoastal	0.085	0.045	0.002	0.160	0.015	14.6
Kuskokwim	0.203	0.059	0.113	0.305	0.053	35.3
BristolBay	0.224	0.046	0.149	0.302	0.036	13.7
UpperYukon	0.020	0.012	0.004	0.042	0.000	1.9
NorthPenn	0.003	0.007	0.000	0.019	0.017	83.2
NWPenn	0.065	0.013	0.044	0.088	0.005	8.2
SouthPenn	0.002	0.005	0.000	0.011	0.008	79.0
ChignikKod	0.033	0.012	0.015	0.053	0.023	225.9
EastKodiak	0.043	0.011	0.026	0.063	0.007	13.3
Replicate 4						
					ABS	Rel ABS
Reporting group	mean	sd	CI.5.	CI.95.	dev	dev
Asia	0.246	0.022	0.210	0.282	0.004	1.8
Kotzebue	0.004	0.007	0.000	0.018	0.016	80.0
CWAK	0.592	0.026	0.549	0.634	0.032	5.8
Norton	0.021	0.037	0.000	0.105	0.029	58.9
YukonCoastal	0.148	0.067	0.039	0.261	0.048	47.8
Kuskokwim	0.233	0.072	0.116	0.353	0.083	55.1
BristolBay	0.191	0.041	0.132	0.264	0.069	26.4
UpperYukon	0.016	0.007	0.006	0.030	0.004	18.3
NorthPenn	0.001	0.003	0.000	0.004	0.019	96.2
NWPenn	0.064	0.014	0.043	0.088	0.004	6.7
SouthPenn	0.013	0.013	0.000	0.035	0.003	25.3
				0.000	0.000	10 (
ChignikKod	0.008	0.011	0.000	0.030	0.002	18.6

Addendum 1 to WASSIP Technical Document 15:	Chum reporting group evaluation
---	---------------------------------

Replicate 5			Table 3 (continued)				
•					ABS	Rel ABS	
Reporting group	mean	sd	CI.5.	CI.95.	dev	dev	
Asia	0.250	0.022	0.214	0.287	0.000	0.0	
Kotzebue	0.025	0.012	0.008	0.047	0.005	25.8	
CWAK	0.564	0.030	0.514	0.611	0.004	0.7	
Norton	0.062	0.042	0.000	0.133	0.012	23.1	
YukonCoastal	0.157	0.057	0.067	0.254	0.057	57.1	
Kuskokwim	0.085	0.069	0.004	0.215	0.065	43.0	
BristolBay	0.260	0.053	0.180	0.355	0.000	0.1	
UpperYukon	0.023	0.010	0.008	0.042	0.003	14.9	
NorthPenn	0.015	0.014	0.001	0.042	0.005	26.2	
NWPenn	0.059	0.015	0.037	0.084	0.001	1.0	
SouthPenn	0.010	0.007	0.000	0.022	0.000	4.9	
ChignikKod	0.003	0.004	0.000	0.011	0.007	66.2	
EastKodiak	0.051	0.012	0.033	0.072	0.001	2.2	

Figures

9 Reporting Groups

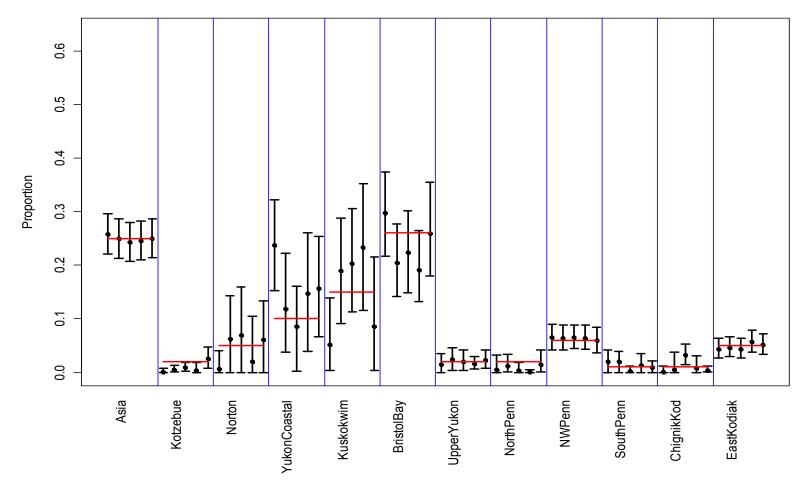

245

Figure 1. BAYES estimates for 5 replicate samples for a fishery-based proof test for 9 reporting groups where coastal western Alaska

247 (CWAK) is a single reporting group. The actual stock composition of the replicate samples is shown as a red horizontal line. For

each replicate sample, the estimate (dot) and lower and upper 90% credibility interval (vertical line) are

249 provided.

12 Reporting Groups

250

251 Figure 2. BAYES estimates for 5 replicate samples for a fishery-based proof test for 12 reporting groups where coastal western

252 Alaska (CWAK) divided into 4 reporting groups (Norton, YukonCoastal, Kukokwim, BristolBay). The actual stock composition of

the replicate samples is shown as a red horizontal line. For each replicate sample, the estimate (dot) and lower and upper 90%

credibility interval (vertical line) are provided.